Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Proc Natl Acad Sci U S A ; 119(28): e2202370119, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-1908384

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections initiate in the bronchi of the upper respiratory tract and are able to disseminate to the lower respiratory tract, where infections can cause an acute respiratory distress syndrome with a high degree of mortality in elderly patients. We used reconstituted primary bronchial epithelia from adult and child donors to follow the SARS-CoV-2 infection dynamics. We show that, in epithelia from adult donors, infections initiate in multiciliated cells and spread within 24 to 48 h throughout the whole epithelia. Syncytia formed of ciliated and basal cells appeared at the apical side of the epithelia within 3 to 4 d and were released into the apical lumen, where they contributed to the transmittable virus dose. A small number of reconstituted epithelia were intrinsically more resistant to virus infection, limiting virus spread to different degrees. This phenotype was more frequent in epithelia derived from children versus adults and correlated with an accelerated release of type III interferon. Treatment of permissive adult epithelia with exogenous type III interferon restricted infection, while type III interferon gene knockout promoted infection. Furthermore, a transcript analysis revealed that the inflammatory response was specifically attenuated in children. Taken together, our findings suggest that apical syncytia formation is an underappreciated source of virus propagation for tissue or environmental dissemination, whereas a robust type III interferon response such as commonly seen in young donors restricted SARS-CoV-2 infection. Thus, the combination of interferon restriction and attenuated inflammatory response in children might explain the epidemiological observation of age-related susceptibility to COVID-19.


Subject(s)
Bronchi , COVID-19 , Giant Cells , Interferons , Respiratory Mucosa , SARS-CoV-2 , Aged , Bronchi/immunology , Bronchi/virology , COVID-19/immunology , COVID-19/virology , Child , Disease Susceptibility , Giant Cells/immunology , Giant Cells/virology , Humans , Interferons/immunology , Respiratory Mucosa/immunology , Respiratory Mucosa/virology , SARS-CoV-2/immunology , Interferon Lambda
2.
Front Immunol ; 12: 743890, 2021.
Article in English | MEDLINE | ID: covidwho-1581344

ABSTRACT

Background: Both anti-viral and anti-inflammatory bronchial effects are warranted to treat viral infections in asthma. We sought to investigate if imiquimod, a TLR7 agonist, exhibits such dual actions in ex vivo cultured human bronchial epithelial cells (HBECs), targets for SARS-CoV-2 infectivity. Objective: To investigate bronchial epithelial effects of imiquimod of potential importance for anti-viral treatment in asthmatic patients. Methods: Effects of imiquimod alone were examined in HBECs from healthy (N=4) and asthmatic (N=18) donors. Mimicking SARS-CoV-2 infection, HBECs were stimulated with poly(I:C), a dsRNA analogue, or SARS-CoV-2 spike-protein 1 (SP1; receptor binding) with and without imiquimod treatment. Expression of SARS-CoV-2 receptor (ACE2), pro-inflammatory and anti-viral cytokines were analyzed by RT-qPCR, multiplex ELISA, western blot, and Nanostring and proteomic analyses. Results: Imiquimod reduced ACE2 expression at baseline and after poly(I:C) stimulation. Imiquimod also reduced poly(I:C)-induced pro-inflammatory cytokines including IL-1ß, IL-6, IL-8, and IL-33. Furthermore, imiquimod increased IFN-ß expression, an effect potentiated in presence of poly(I:C) or SP1. Multiplex mRNA analysis verified enrichment in type-I IFN signaling concomitant with suppression of cytokine signaling pathways induced by imiquimod in presence of poly(I:C). Exploratory proteomic analyses revealed potentially protective effects of imiquimod on infections. Conclusion: Imiquimod triggers viral resistance mechanisms in HBECs by decreasing ACE2 and increasing IFN-ß expression. Additionally, imiquimod improves viral infection tolerance by reducing viral stimulus-induced epithelial cytokines involved in severe COVID-19 infection. Our imiquimod data highlight feasibility of producing pluripotent drugs potentially suited for anti-viral treatment in asthmatic subjects.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Asthma , COVID-19 , Imiquimod/pharmacology , Interferon-beta/drug effects , Respiratory Mucosa/drug effects , Adjuvants, Immunologic/pharmacology , Adult , Aged , Bronchi/drug effects , Bronchi/immunology , Bronchi/virology , Cells, Cultured , Female , Humans , Interferon-beta/immunology , Male , Middle Aged , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2
3.
Nature ; 602(7896): 321-327, 2022 02.
Article in English | MEDLINE | ID: covidwho-1585831

ABSTRACT

It is not fully understood why COVID-19 is typically milder in children1-3. Here, to examine the differences between children and adults in their response to SARS-CoV-2 infection, we analysed paediatric and adult patients with COVID-19 as well as healthy control individuals (total n = 93) using single-cell multi-omic profiling of matched nasal, tracheal, bronchial and blood samples. In the airways of healthy paediatric individuals, we observed cells that were already in an interferon-activated state, which after SARS-CoV-2 infection was further induced especially in airway immune cells. We postulate that higher paediatric innate interferon responses restrict viral replication and disease progression. The systemic response in children was characterized by increases in naive lymphocytes and a depletion of natural killer cells, whereas, in adults, cytotoxic T cells and interferon-stimulated subpopulations were significantly increased. We provide evidence that dendritic cells initiate interferon signalling in early infection, and identify epithelial cell states associated with COVID-19 and age. Our matching nasal and blood data show a strong interferon response in the airways with the induction of systemic interferon-stimulated populations, which were substantially reduced in paediatric patients. Together, we provide several mechanisms that explain the milder clinical syndrome observed in children.


Subject(s)
COVID-19/blood , COVID-19/immunology , Dendritic Cells/immunology , Interferons/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Adult , Bronchi/immunology , Bronchi/virology , COVID-19/pathology , Chicago , Cohort Studies , Disease Progression , Epithelial Cells/cytology , Epithelial Cells/immunology , Epithelial Cells/virology , Female , Humans , Immunity, Innate , London , Male , Nasal Mucosa/immunology , Nasal Mucosa/virology , SARS-CoV-2/growth & development , Single-Cell Analysis , Trachea/virology , Young Adult
4.
Curr Top Microbiol Immunol ; 426: 21-43, 2020.
Article in English | MEDLINE | ID: covidwho-1451909

ABSTRACT

Pulmonary respiration inevitably exposes the mucosal surface of the lung to potentially noxious stimuli, including pathogens, allergens, and particulates, each of which can trigger pulmonary damage and inflammation. As inflammation resolves, B and T lymphocytes often aggregate around large bronchi to form inducible Bronchus-Associated Lymphoid Tissue (iBALT). iBALT formation can be initiated by a diverse array of molecular pathways that converge on the activation and differentiation of chemokine-expressing stromal cells that serve as the scaffolding for iBALT and facilitate the recruitment, retention, and organization of leukocytes. Like conventional lymphoid organs, iBALT recruits naïve lymphocytes from the blood, exposes them to local antigens, in this case from the airways, and supports their activation and differentiation into effector cells. The activity of iBALT is demonstrably beneficial for the clearance of respiratory pathogens; however, it is less clear whether it dampens or exacerbates inflammatory responses to non-infectious agents. Here, we review the evidence regarding the role of iBALT in pulmonary immunity and propose that the final outcome depends on the context of the disease.


Subject(s)
Bronchi/immunology , Immunity, Mucosal/immunology , Respiration/immunology , Humans , Lymphocytes/immunology
5.
Clin Exp Allergy ; 52(2): 324-333, 2022 02.
Article in English | MEDLINE | ID: covidwho-1437986

ABSTRACT

BACKGROUND: Deaths attributed to Coronavirus Disease 2019 (COVID-19) are mainly due to severe hypoxemic respiratory failure. Although the inflammatory storm has been considered the main pathogenesis of severe COVID-19, hypersensitivity may be another important mechanism involved in severe cases, which have a perfect response to corticosteroids (CS). METHOD: We detected the serum level of anti-SARS-CoV-2-spike S1 protein-specific IgE (SP-IgE) and anti-SARS-CoV-2 nucleocapsid protein-specific IgE (NP-IgE) in COVID-19. Correlation of levels of specific IgE and clinical severity were analysed. Pulmonary function test and bronchial provocation test were conducted in early convalescence of COVID-19. We also obtained histological samples via endoscopy to detect the evidence of mast cell activation. RESULT: The levels of serum SP-IgE and NP-IgE were significantly higher in severe cases, and were correlated with the total lung severity scores (TLSS) and the PaO2 /FiO2 ratio. Nucleocapsid protein could be detected in both airway and intestinal tissues, which was stained positive together with activated mast cells, binded with IgE. Airway hyperresponsiveness (AHR) exists in the early convalescence of COVID-19. After the application of CS in severe COVID-19, SP-IgE and NP-IgE decreased, but maintained at a high level. CONCLUSION: Hypersensitivity may be involved in severe COVID-19.


Subject(s)
Bronchi/immunology , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Duodenum/immunology , Hypersensitivity/immunology , Immunoglobulin E/immunology , Mast Cells/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Bronchi/metabolism , Bronchi/pathology , COVID-19/metabolism , COVID-19/pathology , COVID-19/physiopathology , Case-Control Studies , Coronavirus Nucleocapsid Proteins/metabolism , Duodenum/metabolism , Duodenum/pathology , Female , Humans , Hypersensitivity/metabolism , Hypersensitivity/pathology , Hypersensitivity/physiopathology , Lung/physiopathology , Male , Mast Cells/metabolism , Mast Cells/pathology , Middle Aged , Mucous Membrane/immunology , Mucous Membrane/metabolism , Mucous Membrane/pathology , Phosphoproteins/immunology , Phosphoproteins/metabolism , Recovery of Function , Respiratory Hypersensitivity/physiopathology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus/metabolism , Young Adult
6.
Nat Biotechnol ; 40(3): 319-324, 2022 03.
Article in English | MEDLINE | ID: covidwho-1364597

ABSTRACT

Children have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection rates and a substantially lower risk for developing severe coronavirus disease 2019 compared with adults. However, the molecular mechanisms underlying protection in younger age groups remain unknown. Here we characterize the single-cell transcriptional landscape in the upper airways of SARS-CoV-2-negative (n = 18) and age-matched SARS-CoV-2-positive (n = 24) children and corresponding samples from adults (n = 44), covering an age range of 4 weeks to 77 years. Children displayed higher basal expression of relevant pattern recognition receptors such as MDA5 (IFIH1) and RIG-I (DDX58) in upper airway epithelial cells, macrophages and dendritic cells, resulting in stronger innate antiviral responses upon SARS-CoV-2 infection than in adults. We further detected distinct immune cell subpopulations including KLRC1 (NKG2A)+ cytotoxic T cells and a CD8+ T cell population with a memory phenotype occurring predominantly in children. Our study provides evidence that the airway immune cells of children are primed for virus sensing, resulting in a stronger early innate antiviral response to SARS-CoV-2 infection than in adults.


Subject(s)
Bronchi/immunology , Bronchi/virology , COVID-19/immunology , COVID-19/virology , Immunity, Innate , SARS-CoV-2/immunology , Adolescent , Adult , Aged , CD8-Positive T-Lymphocytes/immunology , Child , Child, Preschool , DEAD Box Protein 58/metabolism , Dendritic Cells/immunology , Epithelial Cells/immunology , Epithelial Cells/virology , Female , Humans , Infant , Infant, Newborn , Interferon-Induced Helicase, IFIH1/metabolism , Macrophages/immunology , Male , Middle Aged , Receptors, Immunologic/metabolism , Single-Cell Analysis , T-Lymphocytes, Cytotoxic/immunology , Young Adult
7.
Viruses ; 13(8)2021 08 12.
Article in English | MEDLINE | ID: covidwho-1355052

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), a global pandemic characterized by an exaggerated immune response and respiratory illness. Age (>60 years) is a significant risk factor for developing severe COVID-19. To better understand the host response of the aged airway epithelium to SARS-CoV-2 infection, we performed an in vitro study using primary human bronchial epithelial cells from donors >67 years of age differentiated on an air-liquid interface culture. We demonstrate that SARS-CoV-2 infection leads to early induction of a proinflammatory response and a delayed interferon response. In addition, we observed changes in the genes and pathways associated with cell death and senescence throughout infection. In summary, our study provides new and important insights into the temporal kinetics of the airway epithelial innate immune response to SARS-CoV-2 in older individuals.


Subject(s)
Bronchi/immunology , Bronchi/virology , Immunity, Innate , Respiratory Mucosa/immunology , Respiratory Mucosa/virology , SARS-CoV-2/immunology , Aged , Aging/immunology , Bronchi/cytology , Bronchi/metabolism , COVID-19/immunology , Cell Death/genetics , Cells, Cultured , Cellular Senescence/genetics , Cytokines/biosynthesis , Cytokines/genetics , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/virology , Female , Humans , Inflammation , Interferons/biosynthesis , Interferons/genetics , Male , RNA-Seq , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism , SARS-CoV-2/physiology , Signal Transduction/genetics
8.
J Allergy Clin Immunol ; 147(6): 2083-2097.e6, 2021 06.
Article in English | MEDLINE | ID: covidwho-1272498

ABSTRACT

BACKGROUND: Excessive inflammation triggered by a hitherto undescribed mechanism is a hallmark of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and is associated with enhanced pathogenicity and mortality. OBJECTIVE: Complement hyperactivation promotes lung injury and was observed in patients suffering from Middle East respiratory syndrome-related coronavirus, SARS-CoV-1, and SARS-CoV-2 infections. Therefore, we investigated the very first interactions of primary human airway epithelial cells on exposure to SARS-CoV-2 in terms of complement component 3 (C3)-mediated effects. METHODS: For this, we used highly differentiated primary human 3-dimensional tissue models infected with SARS-CoV-2 patient isolates. On infection, viral load, viral infectivity, intracellular complement activation, inflammatory mechanisms, and tissue destruction were analyzed by real-time RT-PCR, high content screening, plaque assays, luminex analyses, and transepithelial electrical resistance measurements. RESULTS: Here, we show that primary normal human bronchial and small airway epithelial cells respond to SARS-CoV-2 infection by an inflated local C3 mobilization. SARS-CoV-2 infection resulted in exaggerated intracellular complement activation and destruction of the epithelial integrity in monolayer cultures of primary human airway cells and highly differentiated, pseudostratified, mucus-producing, ciliated respiratory tissue models. SARS-CoV-2-infected 3-dimensional cultures secreted significantly higher levels of C3a and the proinflammatory cytokines IL-6, monocyte chemoattractant protein 1, IL-1α, and RANTES. CONCLUSIONS: Crucially, we illustrate here for the first time that targeting the anaphylotoxin receptors C3a receptor and C5a receptor in nonimmune respiratory cells can prevent intrinsic lung inflammation and tissue damage. This opens up the exciting possibility in the treatment of COVID-19.


Subject(s)
Bronchi/immunology , COVID-19/immunology , Complement Activation , Epithelial Cells/immunology , Receptor, Anaphylatoxin C5a/immunology , Respiratory Mucosa/immunology , SARS-CoV-2/immunology , Bronchi/pathology , Bronchi/virology , COVID-19/pathology , COVID-19/virology , Cell Line , Complement C3/immunology , Cytokines/immunology , Epithelial Cells/pathology , Epithelial Cells/virology , Humans , Inflammation/immunology , Inflammation/pathology , Respiratory Mucosa/pathology , Respiratory Mucosa/virology
9.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L926-L931, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-951850

ABSTRACT

The recurrent emergence of novel, pathogenic coronaviruses (CoVs) severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1; 2002), Middle East respiratory syndrome (MERS)-CoV (2012), and most recently SARS-CoV-2 (2019) has highlighted the need for physiologically informative airway epithelial cell infection models for studying immunity to CoVs and development of antiviral therapies. To address this, we developed an in vitro infection model for two human coronaviruses; alphacoronavirus 229E-CoV (229E) and betacoronavirus OC43-CoV (OC43) in differentiated primary human bronchial epithelial cells (pBECs). Primary BECs from healthy subjects were grown at air-liquid interface (ALI) and infected with 229E or OC43, and replication kinetics and time-course expression of innate immune mediators were assessed. OC43 and 229E-CoVs replicated in differentiated pBECs but displayed distinct replication kinetics: 229E replicated rapidly with viral load peaking at 24 h postinfection, while OC43 replication was slower peaking at 96 h after infection. This was associated with diverse antiviral response profiles defined by increased expression of type I/III interferons and interferon-stimulated genes (ISGs) by 229E compared with no innate immune activation with OC43 infection. Understanding the host-virus interaction for previously established coronaviruses will give insight into pathogenic mechanisms underpinning SARS-CoV-2-induced respiratory disease and other future coronaviruses that may arise from zoonotic sources.


Subject(s)
Antiviral Agents/pharmacology , Bronchi/immunology , Coronavirus 229E, Human/immunology , Coronavirus Infections/immunology , Epithelial Cells/immunology , Virus Replication/drug effects , Bronchi/drug effects , Bronchi/virology , Cells, Cultured , Coronavirus 229E, Human/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Epithelial Cells/drug effects , Epithelial Cells/virology , Humans , Interferons/metabolism , Interferon Lambda
10.
J Virol ; 94(19)2020 09 15.
Article in English | MEDLINE | ID: covidwho-852551

ABSTRACT

The newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a pandemic of respiratory illness. Current evidence suggests that severe cases of SARS-CoV-2 are associated with a dysregulated immune response. However, little is known about how the innate immune system responds to SARS-CoV-2. In this study, we modeled SARS-CoV-2 infection using primary human airway epithelial (pHAE) cultures, which are maintained in an air-liquid interface. We found that SARS-CoV-2 infects and replicates in pHAE cultures and is directionally released on the apical, but not basolateral, surface. Transcriptional profiling studies found that infected pHAE cultures had a molecular signature dominated by proinflammatory cytokines and chemokine induction, including interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and CXCL8, and identified NF-κB and ATF-4 as key drivers of this proinflammatory cytokine response. Surprisingly, we observed a complete lack of a type I or III interferon (IFN) response to SARS-CoV-2 infection. However, pretreatment and posttreatment with type I and III IFNs significantly reduced virus replication in pHAE cultures that correlated with upregulation of antiviral effector genes. Combined, our findings demonstrate that SARS-CoV-2 does not trigger an IFN response but is sensitive to the effects of type I and III IFNs. Our studies demonstrate the utility of pHAE cultures to model SARS-CoV-2 infection and that both type I and III IFNs can serve as therapeutic options to treat COVID-19 patients.IMPORTANCE The current pandemic of respiratory illness, COVID-19, is caused by a recently emerged coronavirus named SARS-CoV-2. This virus infects airway and lung cells causing fever, dry cough, and shortness of breath. Severe cases of COVID-19 can result in lung damage, low blood oxygen levels, and even death. As there are currently no vaccines approved for use in humans, studies of the mechanisms of SARS-CoV-2 infection are urgently needed. Our research identifies an excellent system to model SARS-CoV-2 infection of the human airways that can be used to test various treatments. Analysis of infection in this model system found that human airway epithelial cell cultures induce a strong proinflammatory cytokine response yet block the production of type I and III IFNs to SARS-CoV-2. However, treatment of airway cultures with the immune molecules type I or type III interferon (IFN) was able to inhibit SARS-CoV-2 infection. Thus, our model system identified type I or type III IFN as potential antiviral treatments for COVID-19 patients.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Epithelial Cells/immunology , Interferon Type I/immunology , Interferons/immunology , Pneumonia, Viral/immunology , Animals , Betacoronavirus/physiology , Bronchi/cytology , Bronchi/immunology , Bronchi/virology , COVID-19 , Cell Line , Cells, Cultured , Chemokines/immunology , Chlorocebus aethiops , Coronavirus Infections/virology , Cytokines/immunology , Dogs , Epithelial Cells/virology , Humans , Lung/cytology , Lung/immunology , Lung/virology , Madin Darby Canine Kidney Cells , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Vero Cells , Virus Replication , Interferon Lambda
11.
Front Immunol ; 11: 1959, 2020.
Article in English | MEDLINE | ID: covidwho-732901

ABSTRACT

The lung is the vital target organ of coronavirus disease 2019 (COVID-19) caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the majority of patients the most active virus replication seems to be found in the upper respiratory tract, severe cases however suffer from SARS-like disease associated with virus replication in lung tissues. Due to the current lack of suitable anti-viral drugs the induction of protective immunity such as neutralizing antibodies in the lung is the key aim of the only alternative approach-the development and application of SARS-CoV-2 vaccines. However, past experience from experimental animals, livestock, and humans showed that induction of immunity in the lung is limited following application of vaccines at peripheral sides such as skin or muscles. Based on several considerations we therefore propose here to consider the application of a Modified Vaccinia virus Ankara (MVA)-based vaccine to mucosal surfaces of the respiratory tract as a favorable approach to combat COVID-19.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Vaccinia virus/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Administration, Mucosal , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Bronchi/immunology , COVID-19 , Coronavirus Infections/virology , Humans , Immunoglobulin A/metabolism , Lymphoid Tissue/immunology , Plasma Cells/immunology , Pneumonia, Viral/virology , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , SARS-CoV-2 , T-Lymphocytes/immunology , Vaccination , Vaccines, Attenuated/immunology
12.
Cell Rep Med ; 1(4): 100059, 2020 07 21.
Article in English | MEDLINE | ID: covidwho-665121

ABSTRACT

In the current COVID-19 pandemic context, proposing and validating effective treatments represents a major challenge. However, the scarcity of biologically relevant pre-clinical models of SARS-CoV-2 infection imposes a significant barrier for scientific and medical progress, including the rapid transition of potentially effective treatments to the clinical setting. We use reconstituted human airway epithelia to isolate and then characterize the viral infection kinetics, tissue-level remodeling of the cellular ultrastructure, and transcriptional early immune signatures induced by SARS-CoV-2 in a physiologically relevant model. Our results emphasize distinctive transcriptional immune signatures between nasal and bronchial HAE, both in terms of kinetics and intensity, hence suggesting putative intrinsic differences in the early response to SARS-CoV-2 infection. Most important, we provide evidence in human-derived tissues on the antiviral efficacy of remdesivir monotherapy and explore the potential of the remdesivir-diltiazem combination as an option worthy of further investigation to respond to the still-unmet COVID-19 medical need.


Subject(s)
Antiviral Agents/pharmacology , Bronchi/virology , Nose/virology , Respiratory Mucosa/virology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Airway Remodeling , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Bronchi/drug effects , Bronchi/immunology , Bronchi/ultrastructure , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Chlorocebus aethiops , Diltiazem/pharmacology , Drug Synergism , Humans , Immunity, Innate , Models, Biological , Nose/drug effects , Nose/immunology , Nose/ultrastructure , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , Respiratory Mucosa/ultrastructure , SARS-CoV-2/growth & development , Vero Cells , COVID-19 Drug Treatment
13.
J Allergy Clin Immunol ; 146(2): 315-324.e7, 2020 08.
Article in English | MEDLINE | ID: covidwho-592253

ABSTRACT

BACKGROUND: More than 300 million people carry a diagnosis of asthma, with data to suggest that they are at a higher risk for infection or adverse outcomes from severe acute respiratory syndrome coronavirus 2. Asthma is remarkably heterogeneous, and it is currently unclear how patient-intrinsic factors may relate to coronavirus disease 2019. OBJECTIVE: We sought to identify and characterize subsets of patients with asthma at increased risk for severe acute respiratory syndrome coronavirus 2 infection. METHODS: Participants from 2 large asthma cohorts were stratified using clinically relevant parameters to identify factors related to angiotensin-converting enzyme-2 (ACE2) expression within bronchial epithelium. ACE-2-correlated gene signatures were used to interrogate publicly available databases to identify upstream signaling events and novel therapeutic targets. RESULTS: Stratifying by type 2 inflammatory biomarkers, we identified subjects who demonstrated low peripheral blood eosinophils accompanied by increased expression of the severe acute respiratory syndrome coronavirus 2 receptor ACE2 in bronchial epithelium. Genes highly correlated with ACE2 overlapped with type 1 and 2 IFN signatures, normally induced by viral infections. T-cell recruitment and activation within bronchoalveolar lavage cells of ACE2-high subjects was reciprocally increased. These patients demonstrated characteristics corresponding to risk factors for severe coronavirus disease 2019, including male sex, history of hypertension, low peripheral blood, and elevated bronchoalveolar lavage lymphocytes. CONCLUSIONS: ACE2 expression is linked to upregulation of viral response genes in a subset of type 2-low patients with asthma with characteristics resembling known risk factors for severe coronavirus disease 2019. Therapies targeting the IFN family and T-cell-activating factors may therefore be of benefit in a subset of patients.


Subject(s)
Asthma/epidemiology , Asthma/genetics , Coronavirus Infections/epidemiology , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/epidemiology , Receptors, Virus/genetics , Adolescent , Adult , Angiotensin-Converting Enzyme 2 , Asthma/classification , Asthma/immunology , Betacoronavirus/genetics , Betacoronavirus/immunology , Biomarkers/metabolism , Bronchi/immunology , Bronchi/pathology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19 , Cohort Studies , Coronavirus Infections/virology , Eosinophils/immunology , Eosinophils/pathology , Female , Gene Expression Profiling , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology , Male , Middle Aged , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/virology , Protein Interaction Mapping , Receptors, Virus/immunology , Risk Factors , SARS-CoV-2 , Severity of Illness Index , T-Lymphocytes/classification , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Transcriptome , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL